為何聚合物鋰電池冬季容量變低?請(qǐng)從這幾點(diǎn)分析
自打聚合物鋰電池進(jìn)入行業(yè)市場(chǎng)以來(lái),一直以其壽命長(zhǎng)、比容量大、無(wú)記憶效應(yīng)等優(yōu)點(diǎn),獨(dú)得人們寵愛(ài)。
但是,聚合物鋰電池在低溫環(huán)境下使用存在容量低、衰減嚴(yán)重、循環(huán)倍率性能差、析鋰現(xiàn)象明顯、脫嵌鋰不平衡等問(wèn)題。這一問(wèn)題隨著應(yīng)用領(lǐng)域的不斷拓展,聚合物鋰電池的低溫性能低劣帶來(lái)的制約愈加明顯。
據(jù)報(bào)道,在-20℃時(shí)聚合物鋰電池放電容量只有室溫時(shí)的31.5%左右。傳統(tǒng)的鋰離子電池工作溫度在-20~+55℃之間。但是在航空航天、軍工、電動(dòng)車等領(lǐng)域,要求電池能在-40℃正常工作。因此,改善鋰離子電池低溫性質(zhì)具有重大意義。
制約聚合物鋰電池低溫性能的因素
1.低溫環(huán)境下,電解液的黏度增大;甚至部分凝固,導(dǎo)致聚合物鋰電池的導(dǎo)電率下降。
2.低溫環(huán)境下電解液與負(fù)極、隔膜之間的相容性變差。
3.低溫環(huán)境下聚合物鋰電池的負(fù)極析出鋰嚴(yán)重,并且析出的鋰與電解液反應(yīng),其產(chǎn)物沉積導(dǎo)致固態(tài)電解質(zhì)界面(SEI)厚度增加。
4.低溫環(huán)境下聚合物鋰電池在活性物質(zhì)內(nèi)部擴(kuò)散系統(tǒng)降低,電荷轉(zhuǎn)移阻抗(Rct)顯著增大。
影響聚合物鋰電池低溫性能決定性因素探討
觀點(diǎn)一:電解液對(duì)聚合物鋰電池低溫性能的影響最大,電解液的成分及物化性能對(duì)電池低溫性能有重要影響。
電池低溫下循環(huán)面臨的問(wèn)題是:電解液粘度會(huì)變大,離子傳導(dǎo)速度變慢,造成外電路電子遷移速度不匹配,因此電池出現(xiàn)嚴(yán)重極化,充放電容量出現(xiàn)急劇降低。尤其當(dāng)?shù)蜏爻潆姇r(shí),鋰離子很容易在負(fù)極表面形成鋰枝晶,導(dǎo)致電池失效。
聚合物鋰電池電解液的低溫性能與電解液自身電導(dǎo)率的大小關(guān)系密切,電導(dǎo)率大電解液的傳輸離子快,低溫下可以發(fā)揮出更多的容量。電解液中的鋰鹽解離的越多,遷移數(shù)目就越多,電導(dǎo)率就越高。電導(dǎo)率高,離子傳導(dǎo)速率越快,所受極化就越小,在低溫下電池的性能表現(xiàn)越好。因此較高的電導(dǎo)率是實(shí)現(xiàn)聚合物鋰電池良好低溫性能的必要條件。
聚合物鋰電池電解液的電導(dǎo)率與組成成分有關(guān),減小溶劑的粘度是提高電解液電導(dǎo)率的途徑之一。溶劑低溫下溶劑良好的流動(dòng)性是離子運(yùn)輸?shù)谋U?,而低溫下電解液在?fù)極所形成的固體電解質(zhì)膜也是影響鋰離子傳導(dǎo)的關(guān)鍵,且RSEI為鋰離子電池在低溫環(huán)境下的主要阻抗。
觀點(diǎn)二:限制聚合物鋰電池低溫性能的主要因素是低溫下急劇增加的Li+擴(kuò)散阻抗,而并非SEI膜。
聚合物鋰電池正極材料的低溫特性
1.層狀結(jié)構(gòu)正極材料的低溫特性
層狀結(jié)構(gòu),既擁有一維鋰離子擴(kuò)散通道所不可比擬的倍率性能,又擁有三維通道的結(jié)構(gòu)穩(wěn)定性,是最早商用的鋰離子電池正極材料。其代表性物質(zhì)有LiCoO2、Li(Co1-xNix)O2和Li(Ni,Co,Mn)O2等。
以LiCoO2/MCMB為研究對(duì)象,測(cè)試了其低溫充放電特性。
結(jié)果顯示,隨著溫度的降低,其放電平臺(tái)由3.762V(0℃)下降到3.207V(–30℃);其電池總?cè)萘恳灿?8.98mA·h(0℃)銳減到68.55mA·h(–30℃)。
2.尖晶石結(jié)構(gòu)正極材料的低溫特性
尖晶石結(jié)構(gòu)LiMn2O4正極材料,由于不含Co元素,故而具有成本低、無(wú)毒性的優(yōu)勢(shì)。
然而,Mn價(jià)態(tài)多變和Mn3+的Jahn-Teller效應(yīng),導(dǎo)致該組分存在著結(jié)構(gòu)不穩(wěn)定和可逆性差等問(wèn)題。
不同制備方法對(duì)LiMn2O4正極材料的電化學(xué)性能影響較大,以Rct為例:高溫固相法合成的LiMn2O4的Rct明顯高于溶膠凝膠法合成的,且這一現(xiàn)象在鋰離子擴(kuò)散系數(shù)上也有所體現(xiàn)。究其原因,主要是由于不同合成方法對(duì)產(chǎn)物結(jié)晶度和形貌影響較大。
3.磷酸鹽體系正極材料的低溫特性
LiFePO4因絕佳的體積穩(wěn)定性和安全性,和三元材料一起,成為目前動(dòng)力電池正極材料的主體。
磷酸鐵鋰低溫性能差主要是因?yàn)槠洳牧媳旧頌榻^緣體,電子導(dǎo)電率低,鋰離子擴(kuò)散性差,低溫下導(dǎo)電性差,使得電池內(nèi)阻增加,所受極化影響大,電池充放電受阻,因此低溫性能不理想。
在研究低溫下LiFePO4的充放電行為時(shí)發(fā)現(xiàn),其庫(kù)倫效率從55℃的100%分別下降到0℃時(shí)的96%和–20℃時(shí)的64%;放電電壓從55℃時(shí)的3.11V遞減到–20℃時(shí)的2.62V。
利用納米碳對(duì)LiFePO4進(jìn)行改性發(fā)現(xiàn),添加納米碳導(dǎo)電劑后,LiFePO4的電化學(xué)性能對(duì)溫度的敏感性降低,低溫性能得到改善;改性后LiFePO4的放電電壓從25℃時(shí)的3.40V下降到–25℃時(shí)的3.09V,降低幅度僅為9.12%;且其在–25℃時(shí)電池效率為57.3%,高于不含納米碳導(dǎo)電劑的53.4%。
近來(lái),LiMnPO4引起了人們濃厚的興趣。研究發(fā)現(xiàn),LiMnPO4具有高電位(4.1V)、無(wú)污染、價(jià)格低、比容量大(170mAh/g)等優(yōu)點(diǎn)。然而,由于LiMnPO4比LiFePO4更低的離子電導(dǎo)率,故在實(shí)際中常常利用Fe部分取代Mn形成LiMn0.8Fe0.2PO4固溶體。
聚合物鋰電池負(fù)極材料的低溫特性
相對(duì)于正極材料而言,聚合物鋰電池負(fù)極材料的低溫惡化現(xiàn)象更為嚴(yán)重,主要有以下三個(gè)原因:
1.低溫大倍率充放電時(shí)電池極化嚴(yán)重,負(fù)極表面金屬鋰大量沉積,且鋰與電解液的反應(yīng)產(chǎn)物一般不具有導(dǎo)電性;
2.從熱力學(xué)角度,電解液中含有大 量 C–O、C–N 等極性基團(tuán),能與負(fù)極材料反應(yīng),所形成的 SEI 膜更易受低溫影響;
3.碳負(fù)極在低溫下嵌鋰?yán)щy,存在充放電不對(duì)稱性。
低溫電解液的研究
電解液在鋰離子電池中承擔(dān)著傳遞 Li+ 的作用, 其離子電導(dǎo)率和 SEI 成膜性能對(duì)電池低溫性能影響顯著。判斷低溫用電解液優(yōu)劣,有3個(gè)主要指標(biāo):離子電導(dǎo)率、電化學(xué)窗口和電極反應(yīng)活性。而這3個(gè)指標(biāo)的水平,在很大程度上取決于其組成材料:溶劑、電解質(zhì)(鋰鹽)、添加劑。因此,電解液的各部分低溫性能的研究,對(duì)理解和改善電池的低溫性能,具有重要的意義。
·EC 基電解液低溫特性相比鏈狀碳酸酯而言,環(huán)狀碳酸酯結(jié)構(gòu)緊密、作用力大,具有較高的熔點(diǎn)和黏度。但是、環(huán)狀結(jié)構(gòu)帶來(lái)的大的極性, 使其往往具有很大的介電常數(shù)。EC 溶劑的大介電常數(shù)、高離子導(dǎo)電率、絕佳成膜性能, 有效防止溶劑分子共插入,使其具有不可或缺的地位,所以,常用低溫電解液體系大都以 EC 為基, 再混合低熔點(diǎn)的小分子溶劑。
·鋰鹽是電解液的重要組成。鋰鹽在電解液中不 僅能夠提高溶液的離子電導(dǎo)率,還能降低 Li+ 在溶液中的擴(kuò)散距離。一般而言,溶液中的Li+濃度越大,其離子電導(dǎo)率也越大。但電解液中的鋰離子濃度與鋰鹽的濃度并非呈線性相關(guān),而是呈拋物線狀。這是因?yàn)?,溶劑中鋰離子濃度取決于鋰鹽在溶劑中的離解作用和締合作用的強(qiáng)弱。
低溫電解液的研究
除電池組成本身外,在實(shí)際操作中的工藝因素, 也會(huì)對(duì)電池性能產(chǎn)生很大影響:
(1) 制備工藝。研究電極荷載及涂覆厚度對(duì) LiNi0.6Co0.2Mn0.2O2 /Graphite 電池低溫性能的影響發(fā)現(xiàn),就容量保持率而言,電極荷載 越小,涂覆層越薄,其低溫性能越好。
(2) 充放電狀態(tài)。研究低溫充放電狀態(tài)對(duì)電池循環(huán)壽命的影響發(fā)現(xiàn),放電深度較大 時(shí),會(huì)引起較大的容量損失,且降低循環(huán)壽命。
(3) 其它因素。電極的表面積、孔徑、電極密度、電極與電解液的潤(rùn)濕性及隔膜等,均影響著聚合物鋰電池的低溫性能。另外,材料和工藝的缺陷對(duì)電池低溫性能的影響也不容忽視。
總結(jié)
為保證聚合物鋰電池的低溫性能,需要做好以下幾點(diǎn):
1.形成薄而致密的 SEI 膜;
2.保證 Li+ 在活性物質(zhì)中具有較大的擴(kuò)散系數(shù);
3.電解液在低溫下具有高的離子電導(dǎo)率。
此外,研究中還可另辟蹊徑,將目光投向另一類鋰離子電池——全固態(tài)鋰離子電池。相較常規(guī)的鋰離子電池而言,全固態(tài)鋰離子電池,尤其是全固態(tài)薄膜鋰離子電池,有望徹底解決電池在低溫下使用的容量衰減問(wèn)題和循環(huán)安全問(wèn)題。
本文鏈接:http://www.evolveflexfinance.com{dede:field.arcurl/}
諾信新聞,諾信公司新聞,鋰電池行業(yè)新聞,展會(huì)新聞